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Abstract

In this paper, a new formula for the generalized twist is presented which is valid for linearly elastic, nonhomogeneous

and anisotropic beams of solid cross section. The generalized twist is expressed in terms of axial component of the

infinitesimal rotation vector weighted by the stress function of Saint-Venant’s torsional problem. Characterization of a

torsion-free bending problem is also presented by the use of the generalized twist.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a beam of solid cross section bounded by a cylindrical surface (‘‘side-surface’’) and two planes

(‘‘end cross sections’’) normal to the side surface. It is assumed that, the body forces are absent, that the side

surface of the beam is free from external stresses and that the given forces satisfying the equilibrium

conditions of the body as whole are shearing stresses applied to the end cross sections of the beam.
Three-dimensional rectangular Cartesian coordinate system (O; x; y; z) will be used. The unit vectors of

the coordinate system (O; x; y; z) are ex, ey and ez. The Oz axis is directed parallel to the generators of the side

surface and the plane Oxy chosen to coincide with the ‘‘lower’’ of the ends of the beam. The upper end of

the beam will then have the coordinate z ¼ L, where L is the length of the beam (Fig. 1).

The material of the beam is linearly elastic, nonhomogeneous and anisotropic. The material properties of

the cylindrical beam do not depend on the axial coordinate z. The assumed form of anisotropy is described

by the equations (Lekhnitskii, 1963; Milne-Thomson, 1962)
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Fig. 1. Elastic beam of solid cross section.
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cyz ¼ a44syz þ a45sxz; ð1:4Þ
cxz ¼ a45syz þ a55sxz; ð1:5Þ
cxy ¼ a16rx þ a26ry þ a36rz þ a66sxy : ð1:6Þ
According to the nonhomogenity which appears in the plane of cross section the coefficients aij may depend

only on the cross-sectional coordinates x and y. In Eq. (1) ex, ey , ez are direct strains, cxy , cxz, cyz are shearing
strains, rx, ry , rz are normal stresses and sxy , sxz, syz are shearing stresses. From Eqs. (1.1)–(1.6) can be read

out that there exists a plane of symmetry of elasticity. The plane of symmetry of elasticity is the plane Oxy
(Lekhnitskii, 1963; Milne-Thomson, 1962).

It was mentioned the cylindrical beam is loaded by tangential surface forces on its end cross sections

only. We denote by A1 and A2 the end cross sections at z ¼ 0 and at z ¼ L, respectively. The surface

tractions on A1 and A2 are specified as
p1 ¼ X1ðx; yÞex þ Y1ðx; yÞey on A1; ð2:1Þ
p2 ¼ X2ðx; yÞex þ Y2ðx; yÞey on A2: ð2:2Þ
From the conditions of equilibrium it follows that
Z
Ai

Xiðx; yÞdA ¼
Z
Ai

Yiðx; yÞdA ¼ 0 ði ¼ 1; 2Þ; ð3Þ
T ¼
Z
A2

ðxY2 � yX2ÞdA ¼ �
Z
A1

ðxY1 � yX1ÞdA: ð4Þ
In Eq. (4) T is the applied torque, its value is given.

Let u be a sufficiently smooth equilibrium displacement field. The associated strain and stress fields with
u are denoted by EðuÞ and SðuÞ. The connection between the stress field SðuÞ and strain field EðuÞ is for-
mulated in Eq. (1) and the strain field is derived from u by the equation EðuÞ ¼ defu (Lurje, 1970).
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The domain occupied by the cylindrical beam is a three-dimensional space domain V with boundary

surface oV . The boundary surface oV is divided into three parts as oV ¼ A1 [ A2 [ A3. Here, A3 is the

cylindrical surface segment of oV . The surface traction associated with the stress tensor is
sðuÞ ¼ SðuÞn; ð5Þ
where n is the outward unit normal to oV .
The equilibrium displacement field u is a solution of the generalized Saint-Venant problem of torsion if

all the field equations of elasticity (strain–displacement relations, Hooke’s law formulated in Eq. (1) and the

equations of equilibrium with zero body forces) are satisfied under the next boundary conditions
sðuÞ ¼ 0 on A3; sðuÞ ¼ p1 on A1; sðuÞ ¼ p2 on A2: ð6Þ
We note here, p1 and p2 have the form in accordance with Eq. (2) and their components Xi, Yi (i ¼ 1; 2)
satisfy only the conditions (3) and (4), where T is a given value. This means that the different tangential

surface forces on the end cross sections can define a generalized Saint-Venant problem of torsion.

One of the solutions of the generalized Saint-Venant problem of torsion is
us ¼ �#yzex þ #xzey þ #uðx; yÞez; ð7Þ
where the function u ¼ uðx; yÞ is a solution to the boundary value problem (Lekhnitskii, 1963, 1971;

Lomakin, 1976)
o
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A45
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oy
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þ A55

ou
ox
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ou
oy
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ou
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ou
ox
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ny ¼ 0 on oA: ð9Þ
Here, A is the cross section of the beam, it is a simply connected bounded plane domain, oA is the boundary

curve of A, nx, ny are the components of unit outward normal vector to curve oA, and
A44 ¼
a55
M

; A45 ¼ � a45
M

; A55 ¼
a44
M

; M ¼ a44a55 � a245:
In the expression of us # denotes the twist.

The stress field associated with the displacement field us is as follows
rs
x ¼ rs

y ¼ rs
z ¼ ssxy ¼ 0 in V [ oV ; ð10Þ
ssxz ¼ #
oU
oy

; ssyz ¼ �#
oU
ox

in V [ oV ; ð11Þ
and the stress function U ¼ Uðx; yÞ is the solution to the boundary value problem (Lekhnitskii, 1971;

Lomakin, 1976)
o

ox
a44

oU
ox

�
� a45

oU
oy

�
þ o

oy

�
� a45

oU
ox

þ a55
oU
oy

�
¼ �2 in A; ð12Þ
U ¼ 0 on oA: ð13Þ
The connection between the warping function u ¼ uðx; yÞ and the stress function U ¼ Uðx; yÞ is formulated

in equations (Lekhnitskii, 1971; Lomakin, 1976)
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ox

� y ¼ �a45
oU
ox

þ a55
oU
oy

; ð14Þ

ou
oy

þ x ¼ �a44
oU
ox

þ a45
oU
oy

: ð15Þ
Torque–twist relationship is
T ¼ S#; ð16Þ
where S is the torsional rigidity of the cross section (Lekhnitskii, 1971; Lomakin, 1976)
S ¼ 2

Z
A
U dA: ð17Þ
The solution above detailed was offered by Saint-Venant for homogeneous beam in his celebrated memoir

(de Saint-Venant, 1856). Saint-Venant’s solution of pure torsion is based on the warping function

u ¼ uðx; yÞ. Prandtl gave the solution of the uniform (pure) torsion problem for homogeneous isotropic

beam by the use of stress function (Prandtl, 1904).

In connection with the generalized Saint-Venant’s problem of torsion Truesdell (Truesdell, 1959, 1966,

1978) has proposed the following problem.
For an isotropic, linearly elastic cylinder subject to end tangential tractions equipollent to a torque T ,

define the ‘‘twist’’ s in such a way that
T ¼ ðlRÞsðuÞ; ð18Þ

where S ¼ lR, the torsional rigidity of the cylinder, is resolved into the factors l, the shear modulus, and R,
a geometric quantity (Saint-Venant’s torsional constant) depending only on the cross section.

The designation sðuÞ stresses that the generalized twist depends on the considered solution of the gen-
eralized torsional problem. Truesdell remarked that sðuÞ would generalize Saint-Venant’s notion of twist so

as to apply also to solutions of the torsional problem corresponding to distributions of end tractions

different from the one assumed by Saint-Venant (Ieas�an, 1986, 1987).
Day and Podio-Guiduglio (Day, 1981; Podio Guiduglio, 1983) solved the Truesdell’s problem for

homogeneous isotropic beam.

The solution and generalization of Truesdell’s problem for nonhomogeneous anisotropic beam was

presented by Ieas�an. Ieas�an considered the case of coupled torsion-bending-tension problem of anisotropic

beams (Ieas�an, 1986, 1987).
The aim of the present paper is to derive a new formula for the generalized twist if the anisotropy of

nonhomogeneous elastic beam is specified by Eq. (1). Expression of the generalized twist will be given in

terms of Prandtl’s stress function of the uniform torsion and the axial component of the infinitesimal

rotation vector of the generalized Saint-Venant’s torsional problem.
2. Generalized twist

Let u ¼ uex þ vey þ wez be a solution of the generalized torsional problem defined by prescriptions (2)–

(4) and (6). The axial component of the infinitesimal rotation vector can be computed as (Lurje, 1970;

Sokolnikoff, 1956):
xzðuÞ ¼
1

2

ov
ox

�
� ou

oy

�
ðx; y; zÞ 2 V [ oV : ð19Þ
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We introduce the U -weighted mean value of xzðuÞ which relates to the cross sections, by the definition
XðzÞ ¼
R
A Uðx; yÞxzðx; y; zÞdxdyR

A Uðx; yÞdxdy 06 z6 L: ð20Þ
It is evident, if u ¼ us then we have XðzÞ ¼ #z.

Theorem 1. Let u be an arbitrary solution of the generalized torsional problem for a given value of torque T .
The relationship
T ¼ SsðuÞ ð21Þ

is valid. Here sðuÞ is the generalized twist defined by the formula
sðuÞ ¼ XðLÞ � Xð0Þ
L

: ð22Þ
Proof. The proof of the statement formulated in formula (21) is based on Betti’s theorem (Lurje, 1970;

Sokolnikoff, 1956) which says that in this case
Z
oV

sðuÞ � us dA ¼
Z
oV

sðusÞ � udA: ð23Þ
Here, the dot between two vectors denotes their scalar product and # in us is chosen to be one. We have
Z
oV

sðuÞ � us dA ¼
Z
A2

sðuÞ � usdA ¼ L
Z
A2

ðxY2 � yX2ÞdA ¼ TL; ð24Þ
according to Eqs. (2.2), (4) and (7). On the other hand, we can write
Z
oV

sðusÞ � udA ¼
Z
A1

sðusÞ � udAþ
Z
A2

sðusÞ � udA

¼ �
Z
A1

uðx; y; 0Þ oU
oy

�
� vðx; y; 0Þ oU

ox

�
dAþ

Z
A2

uðx; y; LÞ oU
oy

�
� vðx; y; LÞ oU

ox

�
dA

¼ �
Z
oA1

ðuðx; y; 0Þny � vðx; y; 0ÞnxÞU ds�
Z
A1

ov
ox

�
� ou

oy

�
z¼0

U dA

þ
Z
oA2

ðuðx; y; LÞny � vðx; y; LÞnxÞU dsþ
Z
A2

ov
ox

�
� ou

oy

�
z¼L

U dA

¼ 2

Z
A2

xzðx; y; LÞUðx; yÞdA
�

�
Z
A1

xzðx; y; 0ÞUðx; yÞdA
�

¼ SðXðLÞ � Xð0ÞÞ: ð25Þ
Here, we have integrated by parts two times and Stokes theorem, Eqs. (11), (13), (17), (19), (20) have been
used. In Eq. (25), the arc coordinate defined on boundary curve oAi ði ¼ 1; 2Þ has been denoted by s.

Eq. (24) was derived by Day and Podio-Guidugli (Day, 1981; Podio Guiduglio, 1983).

Substitution of Eqs. (24) and (25) into Eq. (23) leads to the formula (21).

We note that the boundary conditions
uðx; y; 0Þ ¼ u1ðx; yÞ; vðx; y; 0Þ ¼ v1ðx; yÞ; rzðx; y; 0Þ ¼ 0; ð26Þ

uðx; y; LÞ ¼ u2ðx; yÞ; vðx; y; LÞ ¼ v2ðx; yÞ; rzðx; y; LÞ ¼ 0; ð27Þ

sðuÞ ¼ 0 on A3 ð28Þ
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determine a mixed type 3D elastostatics boundary value problem of the anisotropic nonhomogeneous

beam. For given values of u1, v1 and u2, v2 this boundary value problem has a unique solution. From the

conditions of equilibrium is follows that the section forces
N ¼
Z
A
rzðx; y; zÞdA; Vx ¼

Z
A
sxzðx; y; zÞdA; Vy ¼

Z
A
syzðx; y; zÞdA ð29Þ
and section moments
Mx ¼
Z
A
yrzðx; y; zÞdA; My ¼ �

Z
A
xrzðx; y; zÞdA ð30Þ
vanish and the torque
T ¼
Z
A
ðxsyzðx; y; zÞ � ysxzðx; y; zÞÞdA ð31Þ
does not depend on the axial coordinate z.
This mixed type 3D boundary value problem is a generalized torsional problem specified by the given

surface displacements u1, v1 and u2, v2. By the application of formula (21) we get the value of the torque T
transmitted by the beam in the terms u1, v1 and u2, v2 without knowing the solution of the corresponding

mixed type 3D elastostatics boundary value problem.
3. A characterization of the torsion-free bending

Let the anisotropic inhomogeneous elastic beam shown in Fig. 1 be loaded by tangential surface forces

on the end cross section A2. The resultant of the system of tangential surface forces is F ¼ Pex þ Qey . Let the
other end cross section of the beam be fixed. It is assumed that the body forces and the surface forces on A3

vanish. According to above formulated prescriptions we have
uðx; y; 0Þ ¼ vðx; y; 0Þ ¼ wðx; y; 0Þ ¼ 0; ð32Þ

sxzðx; y; LÞ ¼ X2ðx; yÞ; syzðx; y; LÞ ¼ Y2ðx; yÞ; rzðx; y; LÞ ¼ 0; ð33Þ

sðuÞ ¼ 0 on A3; ð34Þ
and
P ¼
Z
A2

X2ðx; yÞdA; Q ¼
Z
A2

Y2ðx; yÞdA; P 2 þ Q2 6¼ 0: ð35Þ
This type of loading conditions is used to model the shear behavior of anisotropic inhomogeneous elastic

beam (Lekhnitskii, 1963; Sarkisjan, 1970).

We note here, if the Saint-Venant’s flexure solution is used as a solution of tip loaded beam then the

displacement boundary conditions can be satisfied only weak sense such as
u ¼ v ¼ w ¼ 0;
ou
oz

¼ ov
oz

¼ ov
ox

� ou
oy

¼ 0 at x ¼ y ¼ z ¼ 0 ð36Þ
and the stress field including the distributed surface forces on A1 and A2 follows the Saint-Venant’s flexure
solution (Lekhnitskii, 1963; Sarkisjan, 1970).
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According to Trefftz (1935) in the state of torsion-free bending caused by a tip load there is no inter-

action between the fields of pure torsion and the fields of flexure. This means that the strain energy in pure

torsion and in bending without torsion should be uncoupled. Missing of interaction between the pure

torsion and the bending caused by tip loads is characterized by the equation
WFT ¼
Z L

0

Z
A

cFxzs
T
xz

��
þ cFyzs

T
yz

�
dA
�
dz ¼ 0; ð37Þ
where WFT is the mixed strain energy computed on the equilibrium states of pure torsion (with the unit value
of #) and bending without torsion. Here, cFxz and cFyz are derived from the displacement field of flexure

solution as
cFxz ¼
ouF

oz
þ owF

ox
; cFyz ¼

ovF

oz
þ owF

oy
ð38Þ
and sTxz, s
T
yz can be obtained from Eq. (11) with # ¼ 1.

For solid cross section from Eq. (37) we get
WFT ¼
Z L

0

Z
A

cFxz
oU
oy

��
� cFyz

oU
ox

�
dA
�
dz

¼
Z L

0

Z
oA
ðcFxzny

�
� cFyznxÞU ds

�
dzþ

Z L

0

Z
A

ocFyz
ox

  
� ocFxz

oy

!
U dA

!
dz

¼ 2

Z L

0

Z
A
Uðx; yÞ ox

F
z

oz
dA

� �
dz ¼ 0: ð39Þ
Here, we have integrated by parts and Stokes theorem, boundary condition (13) and the undermentioned
equation (Lurje, 1970)
ocFyz
ox

� ocFxz
oy

¼ o2vF

oxoz
þ o2wF

oxoy
� o2uF

oyoz
� o2wF

oyox
¼ o

oz
ovF

ox

�
� ouF

oy

�
¼ 2

oxF
z

oz
ð40Þ
have been used to derive Eq. (39). From Eq. (39) and the definition of generalized twist it follows that
WFT ¼ 2

Z
A
xF

z ðx; y; LÞUðx; yÞdA
�

�
Z
A
xF

z ðx; y; 0ÞUðx; yÞdA
�

¼ 2

Z
A
Uðx; yÞdA

R
A x

F
z ðx; y; LÞUðx; yÞdAR

A Uðx; yÞdA

�
�
R
A x

F
z ðx; y; 0ÞUðx; yÞdAR

A Uðx; yÞdA

�
¼ S

XF ðLÞ � XF ð0Þ
L

L

¼ SLsðuF Þ ¼ 0: ð41Þ
The validity of Eq. (41) can also be proven by means of Betti’s reciprocal theorem (Lurje, 1970; Sokol-
nikoff, 1956). According to Betti’s reciprocal theorem we can write
WFT ¼
Z
oV

uF � sðuT ÞdA: ð42Þ
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Detailed computations such as used to derive Eqs. (39) and (40) yield
Z
oV

uF � sðuT ÞdA ¼
Z
A1

uF � sðuT ÞdAþ
Z
A2

uF � sðuT ÞdA

¼ �
Z
A1

uF ðx; y; 0Þ oU
oy

�
� vF ðx; y; 0Þ oU

ox

�
dAþ

Z
A2

uF ðx; y; LÞ oU
oy

�
� vF ðx; y; LÞ oU

ox

�
dA

¼ �
Z
oA1

ðuF ðx; y; 0Þny � vF ðx; y; 0ÞnxÞU ds�
Z
A1

Uðx; yÞ ovF

ox

�
� ouF

oy

�
z¼0

dA

þ
Z
oA2

ðuF ðx; y; LÞny � vF ðx; y; LÞnxÞU dsþ
Z
A2

Uðx; yÞ ovF

ox

�
� ouF

oy

�
z¼L

dA

¼ 2

Z
A2

Uðx; yÞxF
z ðx; y; LÞdA

�
�
Z
A1

Uðx; yÞxF
z ðx; y; 0ÞdA

�
¼ SLsðuF Þ: ð43Þ
It is evident, in the case of displacement boundary condition (32)
xF
z ðx; y; 0Þ ¼ XF ð0Þ ¼ 0: ð44Þ
Results obtained above can be formulated in the next theorem.

Theorem 2. In the case of torsion-free bending state the generalized twist
sðuF Þ ¼ XF ðLÞ � XF ð0Þ
L

ð45Þ
vanishes, where XF ðzÞ is given by the equation
XF ðzÞ ¼
R
A Uðx; yÞxF

z ðx; y; zÞdAR
A Uðx; yÞdA : ð46Þ
This characterization of the torsion-free bending state is in harmony with Veubeke’s result which for-

mulates a property of shear centre based on Trefftz’s definition (Veubeke, 1955).
4. Conclusions

In this paper, a new formula for the generalized twist is presented which holds for nonhomogeneous and

anisotropic beams of solid cross section. The assumed form of the anisotropy is specified by Eq. (1). The

material properties of the beam do not depend on the axial coordinate. Following Day, Podio-Guiduglio
and Ieas�an (Day, 1981; Podio Guiduglio, 1983; Ieas�an, 1986, 1987) the concept of the generalized Saint-

Venant’s problem of torsion is introduced and its connection with the generalized twist is analysed.

Expression of the generalized twist was given in terms of warping function of twisted cross section by Day,

Podio-Guiduglio and Ieas�an (Day, 1981; Podio Guiduglio, 1983; Ieas�an, 1986, 1987).
Here, the generalized twist is expressed in terms of the axial component of the infinitesimal rotation

vector weighted by the Prandtl’s stress function of Saint-Venant’s torsional problem.

In Section 3, a characterization of the torsion-free bending problem is presented by the use of generalized

twist. The statement formulated in Theorem 2 accords with Veubeke’s result on a characteristic property of
shear centre.
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